Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Carcinog ; 61(4): 408-416, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34964999

RESUMO

Mechanistic target of rapamycin (mTOR) is a serine-threonine kinase and central regulator of cell growth, differentiation, and survival. mTOR is commonly hyperactivated in a diverse number of cancers and critical roles for mTOR in regulating immune cell differentiation and function have been demonstrated. However, there is little work investigating the roles of mTOR in early B-cell development. Here we demonstrate that conditional disruption of mTOR in developing mouse B cells results in reduced pre-B-cell proliferation and survival, as well as a developmental block at the pre-B-cell stage, with a corresponding lack of peripheral B cells. Upon immunization with NP-CGG antigen, mice with Mtor conditional disruption in early B cells lost their ability to form germinal centers and produce specific antibodies. In competitive BM repopulation assays, donor BM cells from conditional knock-out mice were completely impaired in their ability to reconstitute B cells. Our data reveal the essential role of mTOR in early pre-B-cell development and survival.


Assuntos
Transdução de Sinais , Sirolimo , Animais , Linfócitos B/metabolismo , Diferenciação Celular , Ativação Linfocitária , Camundongos , Camundongos Knockout , Serina-Treonina Quinases TOR/metabolismo
2.
EMBO Rep ; 22(6): e52122, 2021 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-33950553

RESUMO

Metabolic regulation is critical for the maintenance of pluripotency and the survival of embryonic stem cells (ESCs). The transcription factor Tfcp2l1 has emerged as a key factor for the naïve pluripotency of ESCs. Here, we report an unexpected role of Tfcp2l1 in metabolic regulation in ESCs-promoting the survival of ESCs through regulating fatty acid oxidation (FAO) under metabolic stress. Tfcp2l1 directly activates many metabolic genes in ESCs. Deletion of Tfcp2l1 leads to an FAO defect associated with upregulation of glucose uptake, the TCA cycle, and glutamine catabolism. Mechanistically, Tfcp2l1 activates FAO by inducing Cpt1a, a rate-limiting enzyme transporting free fatty acids into the mitochondria. ESCs with defective FAO are sensitive to cell death induced by glycolysis inhibition and glutamine deprivation. Moreover, the Tfcp2l1-Cpt1a-FAO axis promotes the survival of quiescent ESCs and diapause-like blastocysts induced by mTOR inhibition. Thus, our results reveal how ESCs orchestrate pluripotent and metabolic programs to ensure their survival in response to metabolic stress.


Assuntos
Células-Tronco Embrionárias , Metabolismo dos Lipídeos , Ácidos Graxos , Oxirredução , Estresse Fisiológico
3.
Elife ; 82019 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-30667360

RESUMO

Generating recombinant monoclonal antibodies (R-mAbs) from mAb-producing hybridomas offers numerous advantages that increase the effectiveness, reproducibility, and transparent reporting of research. We report here the generation of a novel resource in the form of a library of recombinant R-mAbs validated for neuroscience research. We cloned immunoglobulin G (IgG) variable domains from cryopreserved hybridoma cells and input them into an integrated pipeline for expression and validation of functional R-mAbs. To improve efficiency over standard protocols, we eliminated aberrant Sp2/0-Ag14 hybridoma-derived variable light transcripts using restriction enzyme treatment. Further, we engineered a plasmid backbone that allows for switching of the IgG subclasses without altering target binding specificity to generate R-mAbs useful in simultaneous multiplex labeling experiments not previously possible. The method was also employed to rescue IgG variable sequences and generate functional R-mAbs from a non-viable cryopreserved hybridoma. All R-mAb sequences and plasmids will be archived and disseminated from open source suppliers.


Assuntos
Anticorpos Monoclonais/imunologia , Encéfalo/diagnóstico por imagem , Imunoglobulina G/imunologia , Imuno-Histoquímica , Animais , Especificidade de Anticorpos , Encéfalo/imunologia , Ensaio de Imunoadsorção Enzimática , Humanos , Hibridomas/imunologia , Camundongos , Neurociências/métodos , Ratos , Proteínas Recombinantes/imunologia
4.
Sci Rep ; 8(1): 12977, 2018 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-30154528

RESUMO

Mechanical forces play critical roles in influencing human embryonic stem cell (hESC) fate. However, it remains largely uncharacterized how local mechanical forces influence hESC behavior in vitro. Here, we used an ultrasound (US) technique, acoustic tweezing cytometry (ATC), to apply targeted cyclic subcellular forces to hESCs via integrin-bound microbubbles (MBs). We found that ATC-mediated cyclic forces applied for 30 min to hESCs near the edge of a colony induced immediate global responses throughout the colony, suggesting the importance of cell-cell connection in the mechanoresponsiveness of hESCs to ATC-applied forces. ATC application generated increased contractile force, enhanced calcium activity, as well as decreased expression of pluripotency transcription factors Oct4 and Nanog, leading to rapid initiation of hESC differentiation and characteristic epithelial-mesenchymal transition (EMT) events that depend on focal adhesion kinase (FAK) activation and cytoskeleton (CSK) tension. These results reveal a unique, rapid mechanoresponsiveness and community behavior of hESCs to integrin-targeted cyclic forces.


Assuntos
Diferenciação Celular , Transição Epitelial-Mesenquimal , Células-Tronco Embrionárias Humanas/metabolismo , Mecanotransdução Celular , Ondas Ultrassônicas , Linhagem Celular , Citoesqueleto/metabolismo , Quinase 1 de Adesão Focal/metabolismo , Células-Tronco Embrionárias Humanas/citologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...